![]()
|
This paper presents a kernel smoothing method for multinomial regression. A class of estimators of the regression functions is constructed by minimizing a localized power-divergence measure. These estimators include the bandwidth and a single parameter originating in the power-divergence measure as smoothing parameters. An asymptotic theory for the estimators is developed and the bias-adjusted estimators are obtained. A data-based algorithm for selecting the smoothing parameters is also proposed. Simulation results reveal that the proposed algorithm works efficiently. © 2006 Elsevier Inc. All rights reserved. |