|
|
Basic information |
|
Name |
Yokoyama Takashi |
Belonging department |
|
Occupation name |
|
researchmap researcher code |
1000113859 |
researchmap agency |
Okayama University of Science |
Selective determination of formaldehyde by high-performance liquid chromatography with porous graphtic carbon column using N,N'-bis(9-anthrylmethyl)propane-1,3-diamine as derivatizing reagent
T. Yokoyama, Y. Andoh, T. Kunisawa, K. Mineda, M. Inoue, K. Shimoda, M. Yoshise, S. Hyohdoh, M. Yamamoto, T. Akai, K. Takano, H. Hashitani, M. Hirawa, W. Masuda, N. Yoden, H. Sakae, M. Zenki
|
|
Aromatic compounds containing two secondary amino groups were designed and prepared as new derivatizing reagents for aldehydes. One of them, N,N’-bis(9-anthrylmethyl)propane-1,3-diamine (APD), could achieve selective determination of formaldehyde (FA) on a porous graphitic carbon (PGC) column using xylenes, chlorobenzene, and 1-chloronaphthalene as mobile phases by high-performance liquid chromatography (HPLC). The APD-FA derivative was eluted from the PGC column, while the other APD-aldehyde derivatives remained on the column during the HPLC measurements. This specific elution was not observed using mobile phases such as acetonitrile, 1,4-dioxane, tetrahydrofuran, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, chloroform, benzene, toluene, benzyl alcohol, 2-ethyl-1-hexanol, and pyridine. The APD-FA derivative had a six-membered ring of two tertiary amines identified using 1H NMR spectroscopy. When the π-π interaction of the solvent molecule of the mobile phase with PGC overcame that between the APD-FA derivative and PGC, the APD-FA derivative could be eluted from the column. The best resolution between the peak of the APD-FA derivative and that of free APD was observed when using o-xylene. The optimum derivatization and the HPLC conditions for selective HPLC determination of FA were to conduct the derivatization of FA by heating in an aqueous phase with APD in o-xylene at 100 ºC. In this method, FA could be derivatized with APD at a mildly neutral pH of 6.7, unlike the low pH required for the derivatization of aldehydes with 2,4-dinitrophenylhydrazine (DNPH), which is commonly used for the derivatization of aldehydes. The detection and quantification limits of FA were 0.8 and 3.5 ng mL-1 in this HPLC method with fluorescent detection, respectively. This selective HPLC method could be applied to the determination of FA in various water samples. It was found that only APD among the derivatizing reagents containing two secondary diamines was useful for the selective determination of FA.
Research papers (academic journals)
|