Academic Thesis

Basic information

Name Tsujigiwa Hidetsugu
Belonging department
Occupation name
researchmap researcher code 1000363201
researchmap agency Okayama University of Science

Title

Novel Artificial Scaffold for Bone Marrow Regeneration: Honeycomb Tricalcium Phosphate

Bibliography Type

Joint Author

Author

Inada Y, Takabatake K, Tsujigiwa H, Nakano K, Shan Q, Piao T, Chang A, Kawai H, Nagatsuka H.

Summary

Bone marrow is complex structure containing heterogenetic cells, making it difficult to regenerate using artificial scaffolds. In a previous study, we succeeded in developing honeycomb tricalcium phosphate (TCP), which is a cylindrical scaffold with a honeycomb arrangement of straight pores, and we demonstrated that TCP with 300 and 500 μm pore diameters (300TCP and 500TCP) induced bone marrow structure within the pores. In this study, we examined the optimal scaffold structure for bone marrow with homeostatic bone metabolism using honeycomb TCP. 300TCP and 500TCP were transplanted into rat muscle, and bone marrow formation was histologically assessed. Immunohistochemistry for CD45, CD34, Runt-related transcription factor 2 (Runx2), c-kit single staining, Runx2/N-cadherin, and c-kit/Tie-2 double staining was performed. The area of bone marrow structure, which includes CD45(+) round-shaped hematopoietic cells and CD34(+) sinusoidal vessels, was larger in 300TCP than in 500TCP. Additionally, Runx2(+) osteoblasts and c-kit(+) hematopoietic stem cells were observed on the surface of bone tissue formed within TCP. Among Runx2(+) osteoblasts, spindle-shaped N-cadherin(+) cells existed in association with c-kit(+)Tie-2(+) hematopoietic stem cells on the bone tissue formed within TCP, which formed a hematopoietic stem cell niche similar to as in vivo. Therefore, honeycomb TCP with 300 μm pore diameters may be an artificial scaffold with an optimal geometric structure as a scaffold for bone marrow formation.

Magazine(name)

Materials (Basel)

Publisher

Volume

16

Number Of Pages

4

StartingPage

1393

EndingPage

1393

Date of Issue

2023/02

Referee

Exist

Invited

Not exist

Language

English

Thesis Type

Research papers (academic journals)

ISSN

DOI

10.3390/ma16041393.

NAID

PMID

36837023

URL

J-GLOBAL ID

arXiv ID

ORCID Put Code

DBLP ID