Academic Thesis

Basic information

Name Osaka Noboru
Belonging department
Occupation name
researchmap researcher code 6000017085
researchmap agency Okayama University of Science

Title

Flame retardance-donated lignocellulose nanofibers (LCNFs) by the Mannich reaction with (amino-1,3,5-triazinyl)phosphoramidates and their propereties

Bibliography Type

Joint Author

Author

Fumiaki Ono, Takumi Okihara, Noboru Osaka, Noriyuki Nagaoka, Yuji Kameoka, Akira Ishikawa, Hironari Ooki, Takumi Ito, Daisuke Todome, Shinya Uemoto, Mitsuaki Furutani, Tsutomu Inokuchi, Kenji Okada

Summary

Nitrogen/phosphorus-containing melamines (NPCM), a durable flame-retardant, were prepared by the successive treatment of ArOH (Ar = BrnC6H5−n, n = 0, 1, 2, and 3) with POCl3 and melamine monomer. The prepared flame-retardants were grafted through the CH2 unit to lignocellulose nanofibers (LCNFs) by the Mannich reaction. The resulting three-component products were characterized using FT-IR (ATR) and EA. The thermal behavior of the NPCM-treated LCNF fabric samples was determined using TGA and DSC analyses, and their flammability resistances were evaluated by measuring their Limited Oxygen Index (LOI) and the UL-94V test. A multitude of flame retardant elements in the fabric samples increased the LOI values as much as 45 from 20 of the untreated LCNFs. Moreover, the morphology of both the NPCM-treated LCNFs and their burnt fabrics was studied with a scanning electron microscope (SEM). The heat release lowering effect of the LCNF fabric against the water-based paint was observed with a cone calorimeter. Furthermore, the mechanical properties represented as the tensile strength of the NPCM-treated LCNF fabrics revealed that the increase of the NPCM content in the PP-composites led to an increased bending strength with enhancing the flame-retardance.

Magazine(name)

RSC Advances

Publisher

Volume

12

Number Of Pages

StartingPage

3300

EndingPage

3308

Date of Issue

2022/01

Referee

Exist

Invited

Not exist

Language

Thesis Type

Research papers (academic journals)

ISSN

DOI

https://doi.org/10.1039/D1RA08716A

NAID

PMID

URL

J-GLOBAL ID

arXiv ID

ORCID Put Code

DBLP ID