Academic Thesis

Basic information

Name Watanabe Makoto
Belonging department Physics
Occupation name
researchmap researcher code B000222325
researchmap agency Okayama University of Science

Title

Multi-epoch Direct Imaging and Time-variable Scattered Light Morphology of the HD 163296 Protoplanetary Disk

Bibliography Type

Joint Author

Author

Evan A. Rich, John P. Wisniewski, Thayne Currie, Misato Fukagawa, Carol A. Grady, Michael L. Sitko, Monika Pikhartova, Jun Hashimoto, Lyu Abe, Wolfgang Brandner, Timothy D. Brandt, Joseph C. Carson, Jeffrey Chilcote, Ruobing Dong, Markus Feldt, Miwa Goto, Tyler Groff, Olivier Guyon, Yutaka Hayano, Masahiko Hayashi, Saeko S. Hayashi, Thomas Henning, Klaus W. Hodapp, Miki Ishii, Masanori Iye, Markus Janson, Nemanja Jovanovic, Ryo Kandori, Jeremy Kasdin, Gillian R. Knapp, Tomoyuki Kudo, Nobuhiko Kusakabe, Masayuki Kuzuhara, Jungmi Kwon, Julien Lozi, Frantz Martinache, Taro Matsuo, Satoshi Mayama, Michael W. McElwain, Shoken Miyama, Jun-Ichi Morino, Amaya Moro-Martin, Takao Nakagawa, Tetsuo Nishimura, Tae-Soo Pyo, Eugene Serabyn, Hiroshi Suto, Ray W. Russel, Ryuji Suzuki, Michihiro Takami, Naruhisa Takato, Hiroshi Terada, Christian Thalmann, Edwin L. Turner, Taichi Uyama, Kevin R. Wagner, Makoto Watanabe, Toru Yamada, Hideki Takami, Tomonori Usuda, Motohide Tamura

Summary

We present H-band polarized scattered light imagery and JHK high-contrast spectroscopy of the protoplanetary disk around HD 163296 observed with the High-Contrast Coronographic Imager for Adaptive Optics (HiCIAO) and Subaru Coronagraphic Extreme Adaptive Optics (SCExAO)/Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) instruments at Subaru Observatory. The polarimetric imagery resolve a broken ring structure surrounding HD 163296 that peaks at a distance along the major axis of 0.″65 (66 au) and extends out to 0.″98 (100 au) along the major axis. Our 2011 H-band data exhibit clear axisymmetry, with the NW and SE side of the disk exhibiting similar intensities. Our data are clearly different from 2016 epoch H-band observations of the Very Large Telescope (VLT)/Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), which found a strong 2.7× asymmetry between the NW and SE side of the disk. Collectively, these results indicate the presence of time-variable, non-azimuthally symmetric illumination of the outer disk. While our SCExAO/CHARIS data are sensitive enough to recover the planet candidate identified from NIRC2 in the thermal infrared (IR), we fail to detect an object with JHK brightness nominally consistent with this object. This suggests that the candidate is either fainter in JHK bands than model predictions, possibly due to extinction from the disk or atmospheric dust/clouds, or that it is an artifact of the data set/data processing, such as a residual speckle or partially subtracted disk feature. Assuming standard hot-start evolutionary models and a system age of 5 Myr, we set new, direct mass limits for the inner (outer) Atacama Large Millimeter/submillimeter Array (ALMA)-predicted protoplanet candidate along the major (minor) disk axis of of 1.5 (2) M.

Magazine(name)

The Astrophysical Journal

Publisher

American Astronomical Society

Volume

875

Number Of Pages

1

StartingPage

38

EndingPage

Date of Issue

2019/04

Referee

Exist

Invited

Not exist

Language

English

Thesis Type

Research papers (academic journals)

ISSN

DOI

10.3847/1538-4357/ab0f3b

NAID

PMID

URL

J-GLOBAL ID

arXiv ID

ORCID Put Code

DBLP ID