Academic Thesis

Basic information

Name Kajikawa Shuhei
Belonging department
Occupation name
researchmap researcher code B000359741
researchmap agency Okayama University of Science

Title

Profilin 1 Negatively Regulates Osteoclast Migration in Postnatal Skeletal Growth, Remodeling, and Homeostasis in Mice.

Bibliography Type

Author

Shuhei Kajikawa, Jumpei Shirakawa, Ralph T Bottcher, Mercedes Costell, Yayoi Izu, Tadayoshi Hayata, Masaki Noda, Yoichi Ezura.

Summary

Profilin 1 (Pfn1), a regulator of actin polymerization, controls cell movement in a context-dependent manner. Pfn1 supports the locomotion of most adherent cells by assisting actin-filament elongation, as has been shown in skeletal progenitor cells in our previous study. However, because Pfn1 has also been known to inhibit migration of certain cells, including T cells, by suppressing branched-end elongation of actin filaments, we hypothesized that its roles in osteoclasts may be different from that of osteoblasts. By investigating the osteoclasts in culture, we first verified that Pfn1-knockdown (KD) enhances bone resorption in preosteoclastic RAW264.7 cells, despite having a comparable number and size of osteoclasts. Pfn1-KD in bone marrow cells showed similar results. Mechanistically, Pfn1-KD osteoclasts appeared more mobile than in controls. In vivo, the osteoclast-specific conditional Pfn1-deficient mice (Pfn1-cKO) by CathepsinK-Cre driver demonstrated postnatal skeletal phenotype, including dwarfism, craniofacial deformities, and long-bone metaphyseal osteolytic expansion, by 8 weeks of age. Metaphyseal and diaphyseal femurs were drastically expanded with suppressed trabecular bone mass as indicated by μCT analysis. Histologically, TRAP-positive osteoclasts were increased at endosteal metaphysis to diaphysis of Pfn1-cKO mice. The enhanced movement of Pfn1-cKO osteoclasts in culture was associated with a slight increase in cell size and podosome belt length, as well as an increase in bone-resorbing activity. Our study, for the first time, demonstrated that Pfn1 has critical roles in inhibiting osteoclast motility and bone resorption, thereby contributing to essential roles in postnatal skeletal homeostasis. Our study also provides novel insight into understanding skeletal deformities in human disorders.

Magazine(name)

JBMR Plus

Publisher

Volume

Number Of Pages

StartingPage

EndingPage

Date of Issue

2019/01

Referee

Exist

Invited

Language

English

Thesis Type

Research papers (academic journals)

ISSN

DOI

NAID

PMID

URL

J-GLOBAL ID

arXiv ID

ORCID Put Code

DBLP ID