We study the degeneration problem for maximal Cohen-Macaulay modules and give several examples of such degenerations. It is proved that such degenerations over an even-dimensional simple hypersurface singularity of type (A(n)) are given by extensions. We also prove that all extended degenerations of maximal Cohen-Macaulay modules over a Cohen-Macaulay complete local algebra of finite representation type are obtained by iteration of extended degenerations of Auslander-Reiten sequences.