論文

基本情報

氏名 奥村 英則
氏名(カナ) オクムラ ヒデノリ
氏名(英語) Okumura Hidenori
所属 機構 教育推進機構 基盤教育センター
職名 准教授
researchmap研究者コード 1000180100
researchmap機関 岡山理科大学

題名

Bandwidth selection for kernel binomial regression

単著・共著の別

 

著者

Hidenori Okumura
Kanta Naito

概要

In nonparametric binomial regression, the weighted kernel estimator of the regression function and its efficient bias-adjusted version have been proposed by Okumura and Naito (2004) with consideration to differences of variances of observed response proportions at covariates. The aim of this article is to propose an effective data-based method for bandwidth selection of the bias-adjusted estimator. The proposed method is developed through three steps: the plug-in method by Ruppert et al. (1995), a scale adjustment suggested by Yang and Tschernig (1999), and an effective use of the approach discussed by Grizzel et al. (1969) for the rule-of-thumb part. Theoretical considerations on the asymptotic performance of the selected bandwidth are given under the situation where the numbers of covariates and responses observed at each covariate increase.

発表雑誌等の名称

JOURNAL OF NONPARAMETRIC STATISTICS

出版者

TAYLOR & FRANCIS LTD

18

4-6

開始ページ

343

終了ページ

356

発行又は発表の年月

2006-05

査読の有無

有り

招待の有無

無し

記述言語

英語

掲載種別

研究論文(学術雑誌)

ISSN

 

ID:DOI

10.1080/10485250601014230

ID:NAID(CiNiiのID)

 

ID:PMID

 

JGlobalID

 

arXiv ID

 

ORCIDのPut Code

 

DBLP ID