論文

基本情報

氏名 鬼塚 政一
氏名(カナ) オニツカ マサカズ
氏名(英語) Onitsuka Masakazu
所属 理学部 応用数学科
職名 准教授
researchmap研究者コード 6000023220
researchmap機関 岡山理科大学

題名

Perturbations of planar quasilinear differential systems

単著・共著の別

著者

K. Itakura, M. Onitsuka and S. Tanaka

概要

The quasilinear differential system
$$
  x' = a x + b
y
^{p^*-2}y + k(t,x,y), \quad
  y' = c
x
^{p-2}x + d y + l(t,x,y)
$$
is considered, where $a$, $b$, $c$ and $d$ are real constants with
$b^2+c^2>0$, $p$ and $p^*$ are positive numbers with $(1/p)+(1/p^*)=1$, and
$k$ and $l$ are continuous for $t \ge t_0$ and small $x^2+y^2$.
When $p=2$, this system is reduced to the linear perturbed system.
It is shown that the behavior of solutions near the origin $(0,0)$ is
very similar to the behavior of solutions to the unperturbed system, that is,
the system with $k\equiv l\equiv 0$, near $(0,0)$, provided $k$ and $l$ are
small in some sense.
It is emphasized that this system can not be linearized at $(0,0)$ when
$p\ne 2$, because the Jacobian matrix can not be defined at $(0,0)$.
Our result will be applicable to study radial solutions of the
quasilinear elliptic equation with the differential operator
$r^{-(\gamma-1)}(r^\alpha
u'
^{\beta-a}u')'$, which includes
$p$-Laplacian and $k$-Hessian.

発表雑誌等の名称

Journal of Differential Equations

出版者

271

開始ページ

216

終了ページ

253

発行又は発表の年月

2021/01

査読の有無

有り

招待の有無

無し

記述言語

英語

掲載種別

研究論文(学術雑誌)

ISSN

ID:DOI

ID:NAID(CiNiiのID)

ID:PMID

URL

JGlobalID

arXiv ID

ORCIDのPut Code

DBLP ID