

|
|
基本情報 |
|
氏名 |
村上 康平 |
氏名(カナ) |
ムラカミ コウヘイ |
氏名(英語) |
Murakami Kohei |
所属 |
獣医学部 獣医学科 |
職名 |
講師 |
researchmap研究者コード |
B000280333 |
researchmap機関 |
岡山理科大学 |
Takashi Kato, Masaki Yamamoto, Yoshitaka Honda, Takashi Orimo, Izumi Sasaki, Kohei Murakami, Hiroaki Hemmi, Yuri Fukuda-Ohta, Kyoichi Isono, Saki Takayama, Hidenori Nakamura, Yoshiro Otsuki, Toshiaki Miyamoto, Junko Takita, Takahiro Yasumi, Ryuta Nishikomori, Tadashi Matsubayashi, Kazushi Izawa, Tsuneyasu Kaisho
|
 |
ObjectiveCoatomer subunit alpha (COPA) syndrome, also known as autoinflammatory interstitial lung, joint, and kidney disease, is caused by heterozygous mutations in COPA. We identified a novel COPA variant in 4 patients in one family. We undertook this study to elucidate whether and how the variant causes manifestations of COPA syndrome by studying these 4 patients and by analyzing results from a gene-targeted mouse model.MethodsWe performed whole-exome sequencing in 7 family members and measured the type I interferon (IFN) signature of the peripheral blood cells. We analyzed the effects of COPA variants in in vitro experiments and in Copa mutant mice that were generated.ResultsWe identified a heterozygous variant of COPA (c.725T>G, p.Val242Gly) in the 4 affected members of the family. The IFN score was high in the members carrying the variant. In vitro analysis revealed that COPA V242G, as well as the previously reported disease-causing variants, augmented stimulator of interferon genes (STING)–induced type I IFN promoter activities. CopaV242G/+ mice manifested interstitial lung disease and STING-dependent elevation of IFN-stimulated gene expression. In CopaV242G/+ dendritic cells, the STING pathway was not constitutively activated but was hyperactivated upon stimulation, leading to increased type I IFN production.ConclusionV242G, a novel COPA variant, was found in 4 patients from one family. In gene-targeted mice with the V242G variant, interstitial lung disease was recapitulated and augmented responses of the STING pathway, leading to an increase in type I IFN production, were demonstrated.
|