The progressive cerebral deposition of a 40-42 residues amyloid beta-peptide (Abeta) is regarded as a major factor in the onset of the Alzheimer's disease. It has recently been shown that Abeta(1-40) is cleaved by Escherichia coli pitrilysin, a homologue of insulysin, at a specific site. To facilitate the studies on a recognition mechanism of Abeta by pitrilysin, an overproduction system of Abeta(1-40) as a fusion protein with E. coli RNase HI was constructed. This fusion protein was designed such that an Abeta(1-40) derivative, Abeta(1-40)*, in which Lys16 and Lys28 of Abeta(1-40) are simultaneously replaced by Ala, is attached to the C-terminus of E. coli RNase HI and Abeta(1-40)* is separated from RNase HI upon cleavage with lysyl endopeptidase. The fusion protein was overproduced in E. coli in inclusion bodies, solubilized and purified in the presence of guanidine hydrochloride, and cleaved by lysyl endopeptidase. Abeta(1-40)* was purified from the resultant peptide fragments by reverse-phase HPLC. Measurement of the far-UV CD spectra suggests that Abeta(1-40)* is conformationally similar to Abeta(1-40). However, the thioflavin T binding assay suggests that Abeta(1-40)* is more amyloidogenic than Abeta(1-40). Nevertheless, Abeta(1-40)* was cleaved by pitrilysin at the site identical to that in Abeta(1-40).