論文

基本情報

氏名 秋山 英久
氏名(カナ) アキヤマ ヒデヒサ
氏名(英語) Akiyama Hidehisa
所属 情報理工学部 情報理工学科
職名 講師
researchmap研究者コード 6000028566
researchmap機関 岡山理科大学

題名

Learning Action Evaluation Function for Soccer with Human-Creatable Training Data

単著・共著の別

単著

著者

Hidehisa Akiyama

概要

In competitive team sports, individual player decisions significantly impact
overall team performance. Designing an appropriate evaluation function for scoring a
player’s action selection in complex games such as soccer is a challenging problem. It
is essential to reflect the supervisor’s instructions in decision making, but if a human is
assumed to be the supervisor, it is difficult for the supervisor to accurately score a large
number of trials. This paper employs a learning to rank method to obtain an evaluation
function for action selection, focusing on ball-chasing behavior in soccer. We employed
a gradient boosting decision tree as a learning to rank model. The RoboCup Soccer Sim-
ulator is used for experiments, deriving a ranking model from players’ action logs. The
results show a model with satisfactory performance can be learned when the number of
situations exceeds approximately 1,000, even with training data that is assumed to be
created by humans.

発表雑誌等の名称

 ICIC Express Letters Part B: Applications

出版者

15

6

開始ページ

593

終了ページ

600

発行又は発表の年月

2024/06

査読の有無

有り

招待の有無

無し

記述言語

英語

掲載種別

研究論文(学術雑誌)

ISSN

ID:DOI

10.24507/icicelb.15.06.593

ID:NAID(CiNiiのID)

ID:PMID

URL

JGlobalID

arXiv ID

ORCIDのPut Code

DBLP ID